
Introduction to modern fuzzing
Find and fix vulnerabilities before they reach production

Jochen Hilgers
Senior Software Developer

Background
● Master Computer Science
● Backend- / Web-Development
● Focus on Software Quality

Responsibilities at Code Intelligence
● CLI Tools

 ✉ hello@jochen.dev jochil

Today’s Topics

1. What is Fuzzing

a. History

b. Classification

2. Modern Fuzzing

a. Where to use it

b. What kind of bugs / vulnerabilities can it find

3. Live Demos

3

1 800
MICROSOFT OFFICE

5 200
MOZILLA FIREFOX

37 000
OSS-FUZZ

25 000
GOOGLE CHROME

12 000
LINUX

4

What’s all the fuzz about

ShellShock / Bashdoor

Random Inputs
System

under Test
Crash

What is Fuzzing

5

● Random Testing is around since the 1950s

● Fuzz Testing (Fuzzing) originated around 1988

○ https://pages.cs.wisc.edu/~bart/fuzz/ (project still active)

● 2012 Google announces ClusterFuzz

● 2013 first release of American fuzzy lop (AFL)

○ 2014 Shellshock most vulnerabilities discovered by AFL

● 2016 libFuzzer part of LLVM/clang

● 2016 Google announces OSS-Fuzz

● 2020 Microsoft releases OneFuzz

The History of Fuzzing

6

https://pages.cs.wisc.edu/~bart/fuzz/

Classification

7

… by Target

● Application fuzzing

● Protocol fuzzing

● File format fuzzing

… by knowledge of program structure (*-box)

● white

● grey

● black

… by how input is generated

● Generation-based fuzzing

Generating input based on a model or grammar (eg.

source code, file formats, …)

● Mutation-based fuzzing

Mutating input (bit flipping, …)

… by input structure awareness

● Smart fuzzing

● Dump fuzzing

(Coverage) Guided mutation-based fuzzing

• Generating new input from existing one (bit flipping, evolutionary /genetic

algorithms, …)

• Evaluate Inputs based on watched behavior

The next step to modern fuzzing

8

Random Inputs
System

under Test
Crash

Behavior
Information

Bugs Vulnerabilities

Black-box Fuzzing Coverage-guided Fuzzing

Smartly Generated
Inputs Covering all

Paths

Generated
Inputs

● No knowledge of which code is reached

● Misses critical bugs

● Intelligent & feedback-driven mutations

● Maximizes code coverage

Crash Crash

X X

X

X

X

X

System under testSystem under test

X
X
X

X

Black-box vs Coverage-guided fuzzing

9

In-process fuzzing

● Fuzzer runs in the process (or VM) of the SUT

● Fast

● Relatively easy to get information

In- vs. Out-Of-Process Fuzzing

10

Out-of-process fuzzing

● Fuzzer runs alongside the SUT

● Usually a little bit more “communication”

overhead

● Useful for distributed systems, if used with

“talk back” channel

○ Microservices

● Often used for protocol fuzzing

System under Test <instrumented>

Fuzz Target

FUZZ_TEST(const uint8_t *data, size_t size) {
// …
myFunction(foo, bar)

}

Seed Corpus

Generated
Corpus

Crashing
Input

Fuzzer (Source)
Code

Mutated Inputs

coverage data &
hooks (compares, magic values, …)

interesting input that
discovered new
paths/features

updates

input that gives the
fuzzer useful hints

Components of a Fuzzing System

11

S

Needed for actual triggering the Bug / Vulnerability

Common (C/C++) Sanitizer:

● AdressSanitizer (ASan)

● MemorySanitizer (MSan)

● UndefinedBehaviorSanitizer (UBSan)

● ThreadSanitizer (TSan)

Sanitizers

12

malloc

What type of bugs / vulnerabilities …

13

● ASan

○ (Global|Heap|Stack) Buffer Overflow

○ Use after (return|free|scope)

○ Memory Leaks

○ …

● MSan: reads of uninitialized memory

● TSan: Data Races, Deadlocks

● UBSan

○ Signed integer overflow

○ Out of bounds (Array/BitShifts)

○ Floating point conversion overflow

○ Dereferencing misaligned or null pointers

○ …

● Resource usage bugs: Memory exhaustion,

hangs or infinite loops, infinite recursion

● Logical bugs:

○ Discrepancies between two implementations of the

same protocol

○ Round-trip consistency bugs (e.g. compress the

input, decompress back, - compare with the original)

○ …

● Plain Crashes: NULL dereferences, Uncaught

exceptions

Anything that consumes untrusted or complicated inputs!

● Parsers

● Media codecs

● Network protocols, RPC libraries

● Crypto

● Compression

● Compilers and interpreters

● Regular expression matchers

● Text/UTF processing

● Databases

● Browsers

● Text editors/processors

● OS Kernels, drivers, supervisors and VMs

Good Targets for Fuzzing

14

● Non-crashing bugs are hard to find

● Fuzzing without Sources makes everything harder

○ Coverage Informations

○ Input formats

○ “Brandon Falk - Adventures in Fuzzing” https://www.youtube.com/watch?v=SngK4W4tVc0

Limitations

15

https://www.youtube.com/watch?v=SngK4W4tVc0

Demo Time

● Coverage-guided: based on libFuzzer & JaCoCo

● In-process: very fast (up to 1M executions/s)

● Open source since Feb 2021

● Powers JVM Fuzzing in Google’s OSS-Fuzz

● Autofuzz mode

● Hooks for own Sanitizer/Bug detectors

github.com/CodeIntelligenceTesting/jazzer

Jazzer - Modern Fuzzing for JVM

17

https://github.com/CodeIntelligenceTesting/jazzer

Why fuzz memory-safe languages

18

● Uncaught exceptions

● Assertions

● Inconsistent implementations (differential

fuzzing)

● Property-based testing

● Infinite loops

● OutOfMemoryError

● Remote Code Execution

● Path Traversal

● Injections into Domain Specific Languages

(SQL, EL, Scripts, …)

● ...

Functional Bugs Security Issues

Demo Jazzer

github.com/CodeIntelligenceTesting/jazzer

https://github.com/CodeIntelligenceTesting/jazzer

● Goals

○ Writing Fuzz tests should as easy as writing unit

tests

○ One convenient CLI tool, no matter if you are

working with C++ or JavaScript

● Under active development

● Open source from the start

github.com/CodeIntelligenceTesting/cifuzz

cifuzz - Fuzzing as easy as writing unit tests

20

● Features by now

○ C/C++ including very comfortable CMake

integration

○ IDE Integration (CLion, vscode)

○ Coverage reporting

○ Sandboxing (linux)

○ Regression testing

○ Findings management

● Soon

○ Java / Jazzer Support

○ JavaScript / Jazzer.js Support

○ Out-of-the-box Debugging

○ SaaS Connection

https://github.com/CodeIntelligenceTesting/cifuzz

Demo cifuzz

github.com/CodeIntelligenceTesting/cifuzz

https://github.com/CodeIntelligenceTesting/cifuzz

• Coverage-guided, in-process fuzzer for node.js

• We will releasing it next week as open source

github.com/CodeIntelligenceTesting/jazzer.js

Jazzer.js

22

https://github.com/CodeIntelligenceTesting/jazzer.js

Ganz neu - Jazzer.js

github.com/CodeIntelligenceTesting/jazzer.js

https://github.com/CodeIntelligenceTesting/jazzer.js

● Try to optimize coverage

○ give hints to the fuzzer (seed corpus, internal structures)

● It helps a lot if your fuzz test/target is… (same for the SUT ;))

○ deterministic (eg. not changing global state)

○ stable and fast

○ not wasting resources

● Use FuzzedDataProvider, especially for C/C++ :)

Some Sources

● https://github.com/secfigo/Awesome-Fuzzing

● https://github.com/google/fuzzing

● https://www.code-intelligence.com/blog

Some tips for the start

24

https://github.com/secfigo/Awesome-Fuzzing
https://github.com/google/fuzzing
https://www.code-intelligence.com/blog

● Senior Go Developer (d/f/m)

● Senior Fuzzing Expert (d/f/m)

● (Senior) Clojure Developer (d/f/m)

● Senior Backend Developer (d/f/m)

● Application Security Engineer / Pentester / DevSecOps (d/f/m)

● … and a few more

 https://www.code-intelligence.com/careers

We are hiring … of course ;)

25

https://www.code-intelligence.com/careers

Thanks for joining me!

Any Questions?

