N

S J*‘Ihtroduction to modern fuzzing

Find and fix vulnerabilities before they reach production

Jochen Hilgers

Senior Software Developer

Background
e Master Computer Science
e Backend-/Web-Development
e Focus on Software Quality

Responsibilities at Code Intelligence
e CLITools

| hello@jochen.dev Ojochil

Today’s Topics

1. What is Fuzzing

a. History

b. Classification
2. Modern Fuzzing

a. Wheretouse it

b. What kind of bugs / vulnerabilities can it find

3. Live Demos

¢,

code intelligence

What's all the fuzz about

1800 @’n 12 000
MICROSOFT OFFICE Y ~_ LINUX

25000

GOOGLE CHROME

/
5200
S~ __- MOZILLA FIREFOX

/
/

¢,

code intelligence

Finding Heartbleed

This tutorial will show you how to find Heartbleed using libFuzzer and ClusterFuzz.

ShellShock / Bashdoor

00 CVEs in 50 Days: Fuzzing Adobe Reader

December 12, 2018

Research By: Yoav Alon, Netanel Ben-Simon

What is Fuzzing

Random Inputs

)

fuzz | .
/'toz/

1. to make or become blurred

System

under Test

¢,

code intelligence

The History of Fuzzing

e Random Testing is around since the 1950s

e FuzzTesting (Fuzzing) originated around 1988

o https://pages.cs.wisc.edu/~bart/fuzz/ (project still active)

e 2012 Google announces ClusterFuzz

e 2013 firstrelease of American fuzzy lop (AFL)

o 2014 Shellshock most vulnerabilities discovered by AFL

e 2016 libFuzzer part of LLVM/clang
e 2016 Google announces OSS-Fuzz

e 2020 Microsoft releases OneFuzz

G

code intelligence

https://pages.cs.wisc.edu/~bart/fuzz/

Classification GD

code intelligence

... by Target ... by how input is generated

e Application fuzzing e Generation-based fuzzing

e Protocol fuzzing Generating input based on a model or grammar (eg.

Cile f f fUz7i source code, file formats, ...)
e Flleformatfuzzin
5 e Mutation-based fuzzing

Mutating input (bit flipping, ...)

... by knowledge of program structure (*-box)

. ... by input structure awareness
e white

® grey e Smart fuzzing
e black e Dump fuzzing

The next step to modern fuzzing

(Coverage) Guided mutation-based fuzzing

o Generating new input from existing one (bit flipping, evolutionary /genetic

algorithms, ...)
o Evaluate Inputs based on watched behavior

System
Random Inputs |
> under Test

Behavior
Information

¢,

code intelligence

y
Black-box vs Coverage-guided fuzzing Gl)

code intelligence

Bugs @ Vulnerabilities

Black-box Fuzzing Coverage-guided Fuzzing

e No knowledge of which code is reached e |[ntelligent & feedback-driven mutations

e Misses critical bugs e Maximizes code coverage

System under test Smartly Generated System under test

Inputs Covering all
Paths

Generated
Inputs

r——_—_—_——

In- vs. Out-Of-Process Fuzzing

In-process fuzzing ‘

e Fuzzer runsinthe process (or VM) of the SUT

e [ast

e Relatively easy to get information

Out-of-process fuzzing

e Fuzzerruns alongside the SUT

e Usually a little bit more “communication”

overhead

“talk back” channel

o Microservices

e Often used for protocol fuzzing

G

code intelligence

Useful for distributed systems, if used with

10 —————

Components of a Fuzzing System

input that gives the
fuzzer useful hints

N
S

Seed Corpus

~_

Generated
Corpus

-
interesting input that
discovered new
paths/features

Crashing
Input

‘ Fuzzer

updates

Mutated Inputs>

G

code intelligence

System under Test <instrumented>

Fuzz Target

FUZZ_TEST(const uint8_t *data, size_t size) {

/] .
myFunction(foo, bar)

}

(Source)
Code

4

coverage data &
hooks (compares, magic values, ...)

11 ——————

Sanitizers

Needed for actual triggering the Bug / Vulnerability

Common (C/C++) Sanitizer:

o AdressSanitizer (ASan) - -

malloc

e MemorySanitizer (MSan)
e UndefinedBehaviorSanitizer (UBSan)

e ThreadSanitizer (TSan)

G

code intelligence

12 ———

p
What type of bugs / vulnerabilities ... Gl)

code intelligence

e ASan e Resource usage bugs: Memory exhaustion,

o (Global|Heap|Stack) Buffer Overflow hangs or infinite loops, infinite recursion

o Use after (return|free|scope) e Logical bugs:

o Memory Leaks

i o Discrepancies between two implementations of the

C e same protocol
e MSan: reads of uninitialized memory P

o Round-trip consistency bugs (e.g. compress the
e [San: Data Races, Deadlocks P YPHES 1SS P

e UBSan

o Signed integer overflow
o Out of bounds (Array/BitShifts)
o Floating point conversion overflow exceptions

input, decompress back, - compare with the original)

o ...

e Plain Crashes: NULL dereferences, Uncaught

o Dereferencing misaligned or null pointers

13 ————

Good Targets for Fuzzing

Anything that consumes untrusted or complicated inputs!

Parsers

Media codecs

Network protocols, RPC libraries
Crypto

Compression

Compilers and interpreters

Regular expression matchers
Text/UTF processing
Databases

Browsers

Text editors/processors

OS Kernels, drivers, supervisors and VMs

G

code intelligence

14 ———

Limitations

e Non-crashing bugs are hard to find

e Fuzzing without Sources makes everything harder

o Coverage Informations
o |nput formats

o “Brandon Falk - Adventures in Fuzzing” https://www.youtube.com/watch?v=SngK4W4t\cO

G

code intelligence

15 ————

https://www.youtube.com/watch?v=SngK4W4tVc0

y
Jazzer - Modern Fuzzing for JVM G[)

code intelligence

17 —

e Coverage-guided: based on libFuzzer & JaCoCo
e In-process: very fast (up to 1M executions/s)

e Opensourcesince Feb 2021

e Powers JVM Fuzzing in Google's OSS-Fuzz
e Autofuzz mode

e Hooks for own Sanitizer/Bug detectors

Q github.com/CodelntelligenceTesting/jazzer

https://github.com/CodeIntelligenceTesting/jazzer

Why fuzz memory-safe languages

Functional Bugs

Uncaught exceptions

Assertions

Inconsistent implementations (differential
fuzzing)

Property-based testing

Security Issues

Infinite loops
OutOfMemoryError
Remote Code Execution

Path Traversal

Q@

code intelligence

Injections into Domain Specific Languages

(SQL, EL, Scripts, ...)

18 ————

eTesting/jazzer

https://github.com/CodeIntelligenceTesting/jazzer

.
cifuzz - Fuzzing as easy as writing unit tests G[)

code intelligence

e Goals e Features by now
o Writing Fuzz tests should as easy as writing unit o C/C++including very comfortable CMake
tasts integration

. . o IDE Integration (CLion, vscode)
o One convenient CLI tool, no matter if you are

o Coverage reporting

working with C++ or JavaScript o Sandboxing (linux)

e Under active development o Regression testing
e Open source from the start o Findings management
e Soon

o Java/Jazzer Support

o JavaScript / Jazzer.js Support
o Out-of-the-box Debugging

o SaaS Connection

O github.com/CodelntelligenceTesting/cifuzz

70 ——

https://github.com/CodeIntelligenceTesting/cifuzz

eTesting/cifuzz

https://github.com/CodeIntelligenceTesting/cifuzz

Jazzer.|s

o Coverage-guided, in-process fuzzer for node.js

« We will releasing it next week as open source

Q github.com/CodelntelligenceTesting/jazzer.|s

G

code intelligence

V) —

https://github.com/CodeIntelligenceTesting/jazzer.js

S

elesting/jazzer.js

https://github.com/CodeIntelligenceTesting/jazzer.js

Some tips for the start

o [Trytooptimize coverage

o give hints to the fuzzer (seed corpus, internal structures)

e It helps alotif your fuzz test/target is... (same for the SUT ;))

o deterministic (eg. not changing global state)
o stable and fast

o not wasting resources

e Use FuzzedDataProvider, especially for C/C++)

Some Sources

e https://github.com/secfigo/Awesome-Fuzzing

e https://github.com/google/fuzzing

o https://www.code-intelligence.com/blog

G

code intelligence

V4 v—

https://github.com/secfigo/Awesome-Fuzzing
https://github.com/google/fuzzing
https://www.code-intelligence.com/blog

We are hiring ... of course ;)

e Senior Go Developer (d/f/m)

e Senior Fuzzing Expert (d/f/m)

e (Senior) Clojure Developer (d/f/m)

e Senior Backend Developer (d/f/m)

e Application Security Engineer / Pentester / DevSecOps (d/f/m)

e ...and afew more

GD https://www.code-intelligence.com/careers

¢,

code intelligence

75 —

https://www.code-intelligence.com/careers

Thar

Any Questions?

