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Senior Software Developer

Background
e Master Computer Science
e Backend-/Web-Development
e Focus on Software Quality

Responsibilities at Code Intelligence
e CLITools
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Today’s Topics

1. What is Fuzzing

a. History

b. Classification
2. Modern Fuzzing

a. Wheretouse it

b. What kind of bugs / vulnerabilities can it find

3. Live Demos
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What's all the fuzz about
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Finding Heartbleed

This tutorial will show you how to find Heartbleed using libFuzzer and ClusterFuzz.

ShellShock / Bashdoor

00 CVEs in 50 Days: Fuzzing Adobe Reader

December 12, 2018

Research By: Yoav Alon, Netanel Ben-Simon



What is Fuzzing

Random Inputs

)

fuzz | .
/'toz/

1. to make or become blurred

System

under Test
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The History of Fuzzing

e Random Testing is around since the 1950s

e FuzzTesting (Fuzzing) originated around 1988

o https://pages.cs.wisc.edu/~bart/fuzz/ (project still active)

e 2012 Google announces ClusterFuzz

e 2013 firstrelease of American fuzzy lop (AFL)

o 2014 Shellshock most vulnerabilities discovered by AFL

e 2016 libFuzzer part of LLVM/clang
e 2016 Google announces OSS-Fuzz

e 2020 Microsoft releases OneFuzz
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https://pages.cs.wisc.edu/~bart/fuzz/

Classification GD
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... by Target ... by how input is generated

e Application fuzzing e Generation-based fuzzing

e Protocol fuzzing Generating input based on a model or grammar (eg.

Cile f f fUz7i source code, file formats, ...)
e Flleformatfuzzin
5 e Mutation-based fuzzing

Mutating input (bit flipping, ...)

... by knowledge of program structure ( *-box)

. ... by input structure awareness
e white

® grey e Smart fuzzing
e black e Dump fuzzing



The next step to modern fuzzing

(Coverage) Guided mutation-based fuzzing

o Generating new input from existing one (bit flipping, evolutionary /genetic

algorithms, ...)
o Evaluate Inputs based on watched behavior

System
Random Inputs |
> under Test

Behavior
Information
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y
Black-box vs Coverage-guided fuzzing Gl)
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# Bugs @ Vulnerabilities

Black-box Fuzzing Coverage-guided Fuzzing

e No knowledge of which code is reached e |[ntelligent & feedback-driven mutations

e Misses critical bugs e Maximizes code coverage

System under test Smartly Generated System under test

Inputs Covering all
Paths

Generated
Inputs
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In- vs. Out-Of-Process Fuzzing

In-process fuzzing ‘

e Fuzzer runsinthe process (or VM) of the SUT

e [ast

e Relatively easy to get information

Out-of-process fuzzing

e Fuzzerruns alongside the SUT

e Usually a little bit more “communication”

overhead

“talk back” channel

o Microservices

e Often used for protocol fuzzing

G
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Useful for distributed systems, if used with
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Components of a Fuzzing System

input that gives the
fuzzer useful hints

N
S

Seed Corpus

~_

Generated
Corpus

-
interesting input that
discovered new
paths/features

Crashing
Input

‘ Fuzzer

updates

Mutated Inputs>
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System under Test <instrumented>

Fuzz Target

FUZZ_TEST(const uint8_t *data, size_t size) {

/] .
myFunction(foo, bar)

}

(Source)
Code

4

coverage data &
hooks (compares, magic values, ...)
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Sanitizers

Needed for actual triggering the Bug / Vulnerability

Common (C/C++) Sanitizer:

o AdressSanitizer (ASan) - -

malloc

e MemorySanitizer (MSan)
e UndefinedBehaviorSanitizer (UBSan)

e ThreadSanitizer (TSan)

G
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What type of bugs / vulnerabilities ... Gl)
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e ASan e Resource usage bugs: Memory exhaustion,

o (Global|Heap|Stack) Buffer Overflow hangs or infinite loops, infinite recursion

o Use after (return|free|scope) e Logical bugs:

o Memory Leaks

i o Discrepancies between two implementations of the

C e same protocol
e MSan: reads of uninitialized memory P

o Round-trip consistency bugs (e.g. compress the
e [San: Data Races, Deadlocks P YPHES 1SS P

e UBSan

o Signed integer overflow
o Out of bounds (Array/BitShifts)
o Floating point conversion overflow exceptions

input, decompress back, - compare with the original)

o ...

e Plain Crashes: NULL dereferences, Uncaught

o Dereferencing misaligned or null pointers
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Good Targets for Fuzzing

Anything that consumes untrusted or complicated inputs!

Parsers

Media codecs

Network protocols, RPC libraries
Crypto

Compression

Compilers and interpreters

Regular expression matchers
Text/UTF processing
Databases

Browsers

Text editors/processors

OS Kernels, drivers, supervisors and VMs

G
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Limitations

e Non-crashing bugs are hard to find

e Fuzzing without Sources makes everything harder

o Coverage Informations
o |nput formats

o “Brandon Falk - Adventures in Fuzzing” https://www.youtube.com/watch?v=SngK4W4t\cO

G
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https://www.youtube.com/watch?v=SngK4W4tVc0
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Jazzer - Modern Fuzzing for JVM G[)

code intelligence
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e Coverage-guided: based on libFuzzer & JaCoCo
e In-process: very fast (up to 1M executions/s)

e Opensourcesince Feb 2021

e Powers JVM Fuzzing in Google's OSS-Fuzz
e Autofuzz mode

e Hooks for own Sanitizer/Bug detectors

Q github.com/CodelntelligenceTesting/jazzer


https://github.com/CodeIntelligenceTesting/jazzer

Why fuzz memory-safe languages

Functional Bugs

Uncaught exceptions

Assertions

Inconsistent implementations (differential
fuzzing)

Property-based testing

Security Issues

Infinite loops
OutOfMemoryError
Remote Code Execution

Path Traversal

Q@
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Injections into Domain Specific Languages

(SQL, EL, Scripts, ...)
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eTesting/jazzer



https://github.com/CodeIntelligenceTesting/jazzer

.
cifuzz - Fuzzing as easy as writing unit tests G[)

code intelligence

e Goals e Features by now
o Writing Fuzz tests should as easy as writing unit o C/C++including very comfortable CMake
tasts integration

. . o IDE Integration (CLion, vscode)
o One convenient CLI tool, no matter if you are

o Coverage reporting

working with C++ or JavaScript o Sandboxing (linux)

e Under active development o  Regression testing
e Open source from the start o Findings management
e Soon

o Java/Jazzer Support

o JavaScript / Jazzer.js Support
o Out-of-the-box Debugging

o SaaS Connection

O github.com/CodelntelligenceTesting/cifuzz

70 ——


https://github.com/CodeIntelligenceTesting/cifuzz

eTesting/cifuzz



https://github.com/CodeIntelligenceTesting/cifuzz

Jazzer.|s

o Coverage-guided, in-process fuzzer for node.js

« We will releasing it next week as open source

Q github.com/CodelntelligenceTesting/jazzer.|s

G
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https://github.com/CodeIntelligenceTesting/jazzer.js

S

elesting/jazzer.js



https://github.com/CodeIntelligenceTesting/jazzer.js

Some tips for the start

o [Trytooptimize coverage

o give hints to the fuzzer (seed corpus, internal structures)

e It helps alotif your fuzz test/target is... (same for the SUT ;) )

o deterministic (eg. not changing global state)
o stable and fast

o not wasting resources

e Use FuzzedDataProvider, especially for C/C++ )

Some Sources

e https://github.com/secfigo/Awesome-Fuzzing

e https://github.com/google/fuzzing

o https://www.code-intelligence.com/blog

G
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https://github.com/secfigo/Awesome-Fuzzing
https://github.com/google/fuzzing
https://www.code-intelligence.com/blog

We are hiring ... of course ;)

e Senior Go Developer (d/f/m)

e Senior Fuzzing Expert (d/f/m)

e (Senior) Clojure Developer (d/f/m)

e Senior Backend Developer (d/f/m)

e Application Security Engineer / Pentester / DevSecOps (d/f/m)

e ...and afew more

GD https://www.code-intelligence.com/careers
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https://www.code-intelligence.com/careers
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Any Questions?




