
© 2013 triAGENS GmbH | 2013-08-24

Query mechanisms
for NoSQL databases

FrOSCon, 2013-08-24

Jan Steemann

© 2013 triAGENS GmbH | 2013-08-24

Me

 I'm a software developer,
working at triAGENS GmbH, CGN

 I work a lot on ,
a NoSQL document database

 I like databases in general

© 2013 triAGENS GmbH | 2013-08-24

How to save this programming
language user object in a database?
{
 "id" : 1234,
 "name" : {
 "first" : "foo",
 "last" : "bar"
 },
 "topics": [
 "skating",
 "music"
]
}

© 2013 triAGENS GmbH | 2013-08-24

Relational
Databases

© 2013 triAGENS GmbH | 2013-08-24

Relational databases – tables

 data are stored in tables with typed columns
 all records in a table are homogenously

structured and have the same columns and
data types

 tables are flat (no hierchical data in a table)
 columns have primitive data types:

multi-valued data are not supported

© 2013 triAGENS GmbH | 2013-08-24

Relational databases – schemas

 relational databases have a schema that
defines which tables, columns etc. there are

 users are required to define the schema
elements before data can be stored

 inserted data must match the schema or the
database will reject it

© 2013 triAGENS GmbH | 2013-08-24

Saving the user object in a
relational database
 we cannot store the object as it is in a

relational table, we must first normalise
 for the example, we end up with 3 database

tables (user, topic, and an n:m mapping table
between them)

 note that the object in the programming
language now has a different schema than
we have in the database

© 2013 triAGENS GmbH | 2013-08-24

Schema we may have come to

CREATE TABLE `user` (
 id INTEGER NOT NULL,
 firstName VARCHAR(40) NOT NULL,
 lastName VARCHAR(40) NOT NULL,
 PRIMARY KEY(id)
);
CREATE TABLE `topic` (
 id INTEGER NOT NULL auto_increment,
 name VARCHAR(40) NOT NULL,
 PRIMARY KEY(id),
 UNIQUE KEY(name)
);
CREATE TABLE `userTopic` (
 userId INTEGER NOT NULL,
 topicId INTEGER NOT NULL,
 PRIMARY KEY(userId, topicId),
 FOREIGN KEY(userId) REFERENCES user(id),
 FOREIGN KEY(topicId) REFERENCES topic(id)
);

user
id
firstName
lastName

topic
id
name

userTopic
userId
topicId

© 2013 triAGENS GmbH | 2013-08-24

Now we can save the user object

BEGIN;

­­ insert the user
INSERT INTO `user` (id, firstName, lastName)
VALUES (1234, "foo", "bar");

­­ insert topics (must ignore duplicate keys)
INSERT INTO `topic` (name) VALUES ("skating");
INSERT INTO `topic` (name) VALUES ("music");

­­ insert user­to­topics mapping
INSERT INTO `userTopic` (userId, topicId)
SELECT 1234, id FROM `topic`
WHERE name IN ("skating", "music");

COMMIT;

© 2013 triAGENS GmbH | 2013-08-24

Joins, ACID, and transactions

 to get our data back, we need to read from
multiple tables, either with or without joins

 to make multi-table (or other multi-record)
operations behave predictably in concurrency
situations, relational databases provide
transactions and control over the ACID
properties (atomicity, consistency, isolation,
durability)

© 2013 triAGENS GmbH | 2013-08-24

The ubiquity of SQL

 note that all we did (schema setup, data
manipulation/selection, transactions &
concucrrency control) can be accomplished
with SQL queries

 note: some of the SQL work may be hidden
by object-relational mappers (ORMs)

 SQL is the standard means to query and
administer relational databases

© 2013 triAGENS GmbH | 2013-08-24

NoSQL
Databases

© 2013 triAGENS GmbH | 2013-08-24

Relational databases criticisms (I)

 lots of new databases have emerged in the
past few years, often because...

 ...object-relational mapping can be
complex or costly

 ...relational databases do not play well with
dynamically structured data and often-
varying schemas

© 2013 triAGENS GmbH | 2013-08-24

Relational databases criticisms (II)

 lots of new databases have emerged in the
past few years, often because...

 ...overhead of SQL parsing and full-blown
query engines may be significant for
simple access patterns (primary key
access, BLOB storage etc.)

 ...scaling to many servers with the ACID
guarantees provided by relational databases
is hard

© 2013 triAGENS GmbH | 2013-08-24

NoSQL and NewSQL databases

 many of the recent databases are labelled
 NoSQL (the non-relational ones) or
 NewSQL (the relational ones)

 because they provide alternative solutions
for some of the mentioned problems

 especially the NoSQL ones often sacrifice
features that relational databases have in
their DNA

© 2013 triAGENS GmbH | 2013-08-24

Example NoSQL databases

© 2013 triAGENS GmbH | 2013-08-24

NoSQL database characteristics

 NoSQL databases have multiple (but not
necessarily all) of these characteristics:

 non-relational
 schema-free
 open source
 simple APIs

 several, but not all of them, are distributed
and eventually consistent

© 2013 triAGENS GmbH | 2013-08-24

Non-relational

 NoSQL databases are generally non-
relational, meaning they do not follow the
relational model

 they do not provide tables with flat fixed-
column records

 instead, it is common to work with self-
contained aggregates (which may include
hierarchical data) or even BLOBs

© 2013 triAGENS GmbH | 2013-08-24

Non-relational

 this eliminates the need for complex
object-relational mapping and many data
normalisation requirements

 working on aggregates and BLOBs also led
to sacrificing complex and costly features,
such as query languages, query planners,
referential integrity, joins, ACID guarantees for
cross-record operations etc. in many of these
databases

© 2013 triAGENS GmbH | 2013-08-24

Schema-free

 most NoSQL databases are schema-free
(or at least are very relaxed about schemas)

 there is often no need to define any sort of
schema for the data

 being schema-free allows different records in
the same domain (e.g. "user") to have
heterogenous structures

 this allows a gentle migration of data

© 2013 triAGENS GmbH | 2013-08-24

Simple APIs

 NoSQL databases often provide simple
interfaces to store and query data

 in many cases, the APIs offer access to low-
level data manipulation and selection
methods

 queries capabilities are often limited so
queries can be expressed in a simple way

 SQL is not widely used

© 2013 triAGENS GmbH | 2013-08-24

Simple APIs

 many NoSQL databases have simple text-
based protocols or HTTP REST APIs with
JSON inside

 databases with HTTP APIs are web-enabled
and can be run as internet-facing services

 several vendors provide database-as-a-
service offers

© 2013 triAGENS GmbH | 2013-08-24

Distributed

 several NoSQL databases (not all!) can be
run in a distributed fashion, providing auto-
scalability and failover capabilities

 in a distributed setup, ACID features are often
sacrificed for scalability and throughput

 replication between distributed nodes is
often lazy, meaning the database is
eventually consistent

© 2013 triAGENS GmbH | 2013-08-24

NoSQL databases variety

 there are 100+ NoSQL databases around
 they are often categorised based on the data

model they support, for example:
 document stores
 key-value stores
 wide column/column family stores
 graph databases

 NoSQL databases are typically very different
from each other

© 2013 triAGENS GmbH | 2013-08-24

Document
stores

© 2013 triAGENS GmbH | 2013-08-24

Documents – principle

 documents are self-contained, aggregate
data structures

 they consist of attributes (name-value pairs)
 attribute values have data types, which can

also be nested/hierarchical

© 2013 triAGENS GmbH | 2013-08-24

Example document (JSON)

{
 "id" : 1234,
 "name" : {
 "first" : "foo",
 "last" : "bar"
 },
 "topics": [
 "skating",
 "music"
]
}

© 2013 triAGENS GmbH | 2013-08-24

Objects vs. documents

 programming language objects can often
be stored easily in documents

 lists/arrays, and sub-objects from
programming language objects do not need
to be normalised and re-assembled later

 one programming language object is often
one document in the database

© 2013 triAGENS GmbH | 2013-08-24

Document stores

 document stores have a type system, so
they can perform some basic validation on
data

 as each document carries an implicit
schema, document stores can access all
document attributes and sub-attributes
individually, offering lots of query power

 today will look at document stores CouchDB,
MongoDB, ArangoDB

© 2013 triAGENS GmbH | 2013-08-24

Document stores – CouchDB

 CouchDB is a document store with a JSON
type system

 similar documents are organised in
databases

 the server functionality is exposed via an
HTTP REST API

 to communicate with the CouchDB server,
use curl or the browser

© 2013 triAGENS GmbH | 2013-08-24

Saving the user object in CouchDB

 to create a database "user" for storing
documents, send an HTTP PUT request to the
server:
> curl ­X PUT
 http://couchdb:5984/user

 to save the user object as a document, send
its JSON representation to the server:
> curl ­X POST
 ­d '{"_id":"1234", ...}'
 http://couchdb:5984/user

© 2013 triAGENS GmbH | 2013-08-24

Querying the user object in CouchDB

 to retrieve the object using its unique
document id, send an HTTP GET request:
> curl ­X GET
 http://couchdb:5984/user/1234

© 2013 triAGENS GmbH | 2013-08-24

Views in CouchDB

 querying documents by anything else than
their id attributes requires creating a view

 views are populated with user-defined
JavaScript map-reduce functions

 views are normally populated lazily (when
the view is queried) and incrementally

 view results are persisted so views are
persistent secondary indexes

© 2013 triAGENS GmbH | 2013-08-24

Generic map-reduce algorithm

 map-reduce is a general framework, present
in many databases

 map-reduce requires at least a map function
 map is applied on each (changed)

document to filter out irrelevant documents,
and to emit data for all documents of interest

 the emitted data is sorted and passed in
groups to reduce for aggregation, or, if no
reduce, is the final result

© 2013 triAGENS GmbH | 2013-08-24

Filtering with map

map = function (doc) {
 for (i = 0;
 i < doc.topics.length; i++) {
 if (doc.topics[i] === 'music') {
 emit(null, doc);
 return; // done
 }
 }
};

[null, { "_id" : 1234, }]
...

© 2013 triAGENS GmbH | 2013-08-24

Counting with map

map = function (doc) {
 for (i = 0; i < doc.topics.length; ++i) {
 // emit [name, 1] for each topic
 emit(doc.topics[i], 1);
 }
};

["skating", 1]
["skating", 1]
["music", 1]
...

© 2013 triAGENS GmbH | 2013-08-24

Aggregating with reduce

reduce = function (keys, values, rereduce) {
 if (rereduce) {
 // reducing a reduce result
 return sum(values);
 }
 // return number of values in group
 return values.length;
};

["skating", 2]
["music", 1]
...

© 2013 triAGENS GmbH | 2013-08-24

Map-reduce

 map-reduce functionality is available in many
NoSQL databases

 it got popular because map can be run fully
distributed, thus allowing the analysis of big
datasets

 it is actual programming, not writing queries!

© 2013 triAGENS GmbH | 2013-08-24

Document stores – MongoDB

 MongoDB is a document store with a BSON
(a binary superset of JSON) type system

 similar documents are organised in
databases with collections

 to connect to a MongoDB server, use the
mongo client (no HTTP)

© 2013 triAGENS GmbH | 2013-08-24

Saving the user object in MongoDB

 to store the user object, use save:
mongo> db.user.save({
 "_id" : 1234,
 "name" : {
 "first" : "foo",
 "last" : "bar"
 },
 "topics" : ["skating", "music"]
});

© 2013 triAGENS GmbH | 2013-08-24

Querying the user object in MongoDB

 use find to filter on any attribute or sub-
attribute(s):
mongo> db.user.find({
 "_id" : 1234
});

mongo> db.user.find({
 "name.first" : "foo"
});

© 2013 triAGENS GmbH | 2013-08-24

Querying using $query $operators

mongo> db.user.find({
 "$or" : [
 { "name.first" : "foo"},
 {
 "topics" : {
 "$in" : ["skating"]
 }
 }
]
});

© 2013 triAGENS GmbH | 2013-08-24

Querying in MongoDB: more options

 find queries can be combined with count(),
limit(), skip(), sort() etc. functions

 secondary indexes can be created on
attributes or sub-attributes to speed up
searches

 several aggregation functions are also
provided

 no joins or cross-collection queries are
possible

© 2013 triAGENS GmbH | 2013-08-24

Querying in MongoDB: more options

 find queries can be combined with count(),
limit(), skip(), sort() etc. functions

 secondary indexes can be created on
attributes or sub-attributes to speed up
searches

 several aggregation functions are also
provided

 no joins or cross-collection queries are
possible

© 2013 triAGENS GmbH | 2013-08-24

Document stores – ArangoDB

 ArangoDB is a document store that uses a
JSON type system

 similar documents are organised in
collections

 server functionality is exposed via HTTP
REST API

 to connect, use curl, the arangosh client or
the browser

© 2013 triAGENS GmbH | 2013-08-24

Saving the user object in ArangoDB

arangosh> db._create("user");
arangosh> db.user.save({
 "_key" : "1234",
 "name" : {
 "first" : "foo",
 "last" : "bar"
 },
 "topics": [
 "skating",
 "music"
]
});

© 2013 triAGENS GmbH | 2013-08-24

Querying the user object in ArangoDB

 to get the object back, query it by its unique
key:
arangosh> db.user.document("1234");

 to retrieve document(s) provide some
example values:
arangosh> db.user.byExample({
 "name.first": "foo"
});

© 2013 triAGENS GmbH | 2013-08-24

ArangoDB Query Language (AQL)

 in addition to the low-level access methods,
ArangoDB also provides a high-level query
language, AQL

 the language integrates JSON naturally
 AQL allows running complex queries,

including aggregation and joins
 indexes on the filter conditions and join

attributes will be used if present

© 2013 triAGENS GmbH | 2013-08-24

Querying with AQL

to query all users with at least 3 topics
(including topic "skating") with topic counts:
FOR u IN user
 FILTER "skating" IN u.topics &&
 LENGTH(u.topics) >= 3
 RETURN {
 "name" : u.name,
 "topics" : u.topics,
 "count" : LENGTH(u.topics)
 }

© 2013 triAGENS GmbH | 2013-08-24

Aggregation using AQL

to count the frequencies of all topics:
FOR u IN user
 FOR t IN u.topics
 COLLECT topicName = t INTO g
 RETURN {
 "name" : topicName,
 "count" : LENGTH(g)
 }

© 2013 triAGENS GmbH | 2013-08-24

Key-value
stores

© 2013 triAGENS GmbH | 2013-08-24

Key-value stores – principle

 in a key-value store, a value is mapped to a
unique key

 to store data, supply both key and value:
> store.set("user­1234", "...");

 to retrieve a value, supply its key:
> value = store.get("user­1234");

 keys are organised in databases, buckets,
keyspaces etc.

© 2013 triAGENS GmbH | 2013-08-24

Key-value stores – values

 key-value stores treat value data as
indivisible BLOBs by default (some
operations will treat values as numeric)

 for the store, the values do not have a
known structure and will not be validated

 as no structure is known, values can only be
queried via their keys, not by values or sub-
parts of values

© 2013 triAGENS GmbH | 2013-08-24

Key-value stores – basic operations

 key-value stores are very efficient for basic
operations on keys, such as set, get, del,
replace, incr, decr

 many stores also provide automatic ttl-
based expiration of values (useful for
caches)

 some provide key enumeration to retrieve
the full or a restricted list of keys

© 2013 triAGENS GmbH | 2013-08-24

Saving the user object in Redis

 Redis is a (single server) key-value store
 to connect, use redis­cli (or telnet)

 to store the user object in Redis:
redis> set user­1234
 <serialized object
 representation>

© 2013 triAGENS GmbH | 2013-08-24

Querying the user object from Redis

 to retrieve the user object, supply the key:
redis> get user­1234
<serialized object representation>

 to query the list of users, we can use key
enumeration using a prefix:
redis> keys user­*
1) "user­1234"

 that's about what we can do with BLOB
values

© 2013 triAGENS GmbH | 2013-08-24

Additional querying in Redis

 Redis provides extra commands to work on
data structures (sets, lists, hashes)

 these commands allow to Redis to be used
for some extra use cases

© 2013 triAGENS GmbH | 2013-08-24

Mapping users to topics in Redis

 we can use Redis sets to map users to topics
 each topic gets its own set
 and user ids are added to all sets they have

topics for:
redis> sadd topic­skating 1234
redis> sadd topic­music 1234
redis> sadd topic­skating 2345
redis> sadd topic­running 3456

© 2013 triAGENS GmbH | 2013-08-24

Querying users for topics in Redis

 which users have topic "skating" assigned?
redis> smembers topic­skating
1) "1234"
2) "2345"

 which users have both topics "skating" and
"music" assigned (intersection)?
redis> sinter topic­skating
 topic­music
1) "1234"

© 2013 triAGENS GmbH | 2013-08-24

Querying distinct values in Redis

 using the sets and key enumeration, we can
also answer the question "what distinct topics
are there?":
redis> keys topic­*
1) "topic­skating"
2) "topic­music"
3) "topic­running"

© 2013 triAGENS GmbH | 2013-08-24

Data structure commands in Redis

 there is no general-purpose query language
so querying is rather limited

 in general, data must be made to fit the
commands

 the special commands are very useful to
implement counters, queues, and
publish/subscribe

© 2013 triAGENS GmbH | 2013-08-24

Other key-value stores

 other key-value stores use the memcache
protocol or provide an HTTP API

 some allow users to maintain secondary
indexes

 these indexes can be used for equality and
range queries on the index data

 some key-value stores also provide map-
reduce for arbitrary queries

© 2013 triAGENS GmbH | 2013-08-24

Summary

© 2013 triAGENS GmbH | 2013-08-24

Summary – non-relational

 NoSQL databases are very different from
relational databases and do not follow the
relational model

 instead of working on fixed column tables, they
work on aggregates or BLOBs

 they often intentionally lack features that
relational databases have

 SQL is not widely used to query and administer

© 2013 triAGENS GmbH | 2013-08-24

Summary – categories

 there are different categories of NoSQL
databases, with different use cases and
limitations each

 key-value stores normally focus on high
throughput and/or scalability, and often allow
limited querying only

 document stores try to be more general
purpose and often allow more complex
queries

© 2013 triAGENS GmbH | 2013-08-24

Summary – usage

 the APIs of NoSQL databases are often
simple, so it is easy to get started with
them

 providing database access via HTTP REST
APIs is quite common in the NoSQL world

 this allows querying the database directly
from any HTTP-enabled clients (browsers,
mobile devices etc.)

© 2013 triAGENS GmbH | 2013-08-24

Summary – variety

 NoSQL databases are very different from
each other

 there are yet no standards such as SQL is in
the relational world

 there is an interesting attempt to establish a
cross-database query language (JSONiq)

	Titel
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67

