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Me

 I'm a software developer,
working at triAGENS GmbH, CGN

 I work a lot on                             ,
a NoSQL document database

 I like databases in general
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How to save this programming 
language user object in a database?
{
  "id" : 1234,
  "name" : {
    "first" : "foo",
    "last" : "bar"
  },
  "topics": [
    "skating",
    "music"
  ]
}
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Relational 
Databases
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Relational databases – tables

 data are stored in tables with typed columns
 all records in a table are homogenously 

structured and have the same columns and 
data types

 tables are flat (no hierchical data in a table)
 columns have primitive data types:

multi-valued data are not supported
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Relational databases – schemas

 relational databases have a schema that 
defines which tables, columns etc. there are

 users are required to define the schema 
elements before data can be stored

 inserted data must match the schema or the 
database will reject it
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Saving the user object in a 
relational database
 we cannot store the object as it is in a 

relational table, we must first normalise
 for the example, we end up with 3 database 

tables (user, topic, and an n:m mapping table 
between them)

 note that the object in the programming 
language now has a different schema than 
we have in the database
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Schema we may have come to

CREATE TABLE `user` (
  id INTEGER NOT NULL,
  firstName VARCHAR(40) NOT NULL,
  lastName VARCHAR(40) NOT NULL,
  PRIMARY KEY(id)
);
CREATE TABLE `topic` (
  id INTEGER NOT NULL auto_increment,
  name VARCHAR(40) NOT NULL,
  PRIMARY KEY(id),
  UNIQUE KEY(name)
);
CREATE TABLE `userTopic` (
  userId INTEGER NOT NULL,
  topicId INTEGER NOT NULL,
  PRIMARY KEY(userId, topicId),
  FOREIGN KEY(userId) REFERENCES user(id),
  FOREIGN KEY(topicId) REFERENCES topic(id)
);

user
id
firstName
lastName

topic
id
name

userTopic
userId
topicId
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Now we can save the user object

BEGIN;

­­ insert the user
INSERT INTO `user` (id, firstName, lastName) 
VALUES (1234, "foo", "bar");

­­ insert topics (must ignore duplicate keys)
INSERT INTO `topic` (name) VALUES ("skating");
INSERT INTO `topic` (name) VALUES ("music");

­­ insert user­to­topics mapping
INSERT INTO `userTopic` (userId, topicId) 
SELECT 1234, id FROM `topic` 
WHERE name IN ("skating", "music");

COMMIT;
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Joins, ACID, and transactions

 to get our data back, we need to read from 
multiple tables, either with or without joins

 to make multi-table (or other multi-record) 
operations behave predictably in concurrency 
situations, relational databases provide 
transactions and control over the ACID 
properties (atomicity, consistency, isolation, 
durability)
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The ubiquity of SQL

 note that all we did (schema setup, data 
manipulation/selection, transactions & 
concucrrency control) can be accomplished 
with SQL queries

 note: some of the SQL work may be hidden 
by object-relational mappers (ORMs)

 SQL is the standard means to query and 
administer relational databases
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NoSQL 
Databases
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Relational databases criticisms (I)

 lots of new databases have emerged in the 
past few years, often because...

 ...object-relational mapping can be 
complex or costly

 ...relational databases do not play well with 
dynamically structured data and often-
varying schemas
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Relational databases criticisms (II)

 lots of new databases have emerged in the 
past few years, often because...

 ...overhead of SQL parsing and full-blown 
query engines may be significant for 
simple access patterns (primary key 
access, BLOB storage etc.)

 ...scaling to many servers with the ACID 
guarantees provided by relational databases 
is hard
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NoSQL and NewSQL databases

 many of the recent databases are labelled
 NoSQL (the non-relational ones) or
 NewSQL (the relational ones) 

 because they provide alternative solutions 
for some of the mentioned problems

 especially the NoSQL ones often sacrifice 
features that relational databases have in 
their DNA



© 2013 triAGENS GmbH | 2013-08-24

Example NoSQL databases
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NoSQL database characteristics

 NoSQL databases have multiple (but not 
necessarily all) of these characteristics:

 non-relational
 schema-free
 open source
 simple APIs

 several, but not all of them, are distributed 
and eventually consistent
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Non-relational

 NoSQL databases are generally non-
relational, meaning they do not follow the 
relational model

 they do not provide tables with flat fixed-
column records

 instead, it is common to work with self-
contained aggregates (which may include 
hierarchical data) or even BLOBs
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Non-relational

 this eliminates the need for complex 
object-relational mapping and many data 
normalisation requirements

 working on aggregates and BLOBs also led 
to sacrificing complex and costly features, 
such as query languages, query planners, 
referential integrity, joins, ACID guarantees for 
cross-record operations etc. in many of these 
databases
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Schema-free

 most NoSQL databases are schema-free
(or at least are very relaxed about schemas)

 there is often no need to define any sort of 
schema for the data

 being schema-free allows different records in 
the same domain (e.g. "user") to have 
heterogenous structures

 this allows a gentle migration of data
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Simple APIs

 NoSQL databases often provide simple 
interfaces to store and query data

 in many cases, the APIs offer access to low-
level data manipulation and selection 
methods

 queries capabilities are often limited so 
queries can be expressed in a simple way

 SQL is not widely used
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Simple APIs

 many NoSQL databases have simple text-
based protocols or HTTP REST APIs with 
JSON inside

 databases with HTTP APIs are web-enabled 
and can be run as internet-facing services

 several vendors provide database-as-a-
service offers
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Distributed

 several NoSQL databases (not all!) can be 
run in a distributed fashion, providing auto-
scalability and failover capabilities

 in a distributed setup, ACID features are often 
sacrificed for scalability and throughput

 replication between distributed nodes is 
often lazy, meaning the database is 
eventually consistent
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NoSQL databases variety

 there are 100+ NoSQL databases around
 they are often categorised based on the data 

model they support, for example:
 document stores
 key-value stores
 wide column/column family stores
 graph databases

 NoSQL databases are typically very different 
from each other
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Document
stores



© 2013 triAGENS GmbH | 2013-08-24

Documents – principle

 documents are self-contained, aggregate 
data structures

 they consist of attributes (name-value pairs)
 attribute values have data types, which can 

also be nested/hierarchical



© 2013 triAGENS GmbH | 2013-08-24

Example document (JSON)

{
  "id" : 1234,
  "name" : {
    "first" : "foo",
    "last" : "bar"
  },
  "topics": [
    "skating",
    "music"
  ]
}
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Objects vs. documents

 programming language objects can often 
be stored easily in documents

 lists/arrays, and sub-objects from 
programming language objects do not need 
to be normalised and re-assembled later

 one programming language object is often
one document in the database
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Document stores

 document stores have a type system, so 
they can perform some basic validation on 
data

 as each document carries an implicit 
schema, document stores can access all 
document attributes and sub-attributes 
individually, offering lots of query power

 today will look at document stores CouchDB, 
MongoDB, ArangoDB
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Document stores – CouchDB

 CouchDB is a document store with a JSON 
type system

 similar documents are organised in 
databases

 the server functionality is exposed via an 
HTTP REST API

 to communicate with the CouchDB server, 
use curl or the browser
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Saving the user object in CouchDB

 to create a database "user" for storing 
documents, send an HTTP PUT request to the 
server:
> curl ­X PUT
  http://couchdb:5984/user

 to save the user object as a document, send 
its JSON representation to the server:
> curl ­X POST 
  ­d '{"_id":"1234", ...}'
  http://couchdb:5984/user
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Querying the user object in CouchDB

 to retrieve the object using its unique 
document id, send an HTTP GET request:
> curl ­X GET        
  http://couchdb:5984/user/1234
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Views in CouchDB

 querying documents by anything else than 
their id attributes requires creating a view

 views are populated with user-defined 
JavaScript map-reduce functions

 views are normally populated lazily (when 
the view is queried) and incrementally

 view results are persisted so views are 
persistent secondary indexes
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Generic map-reduce algorithm

 map-reduce is a general framework, present 
in many databases

 map-reduce requires at least a map function
 map is applied on each (changed) 

document to filter out irrelevant documents, 
and to emit data for all documents of interest

 the emitted data is sorted and passed in 
groups to reduce for aggregation, or, if no 
reduce, is the final result
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Filtering with map

map = function (doc) {
  for (i = 0; 
       i < doc.topics.length; i++) {
    if (doc.topics[i] === 'music') {
      emit(null, doc);
      return; // done
    }
  }
};

[ null, { "_id" : 1234, .... } ]
...
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Counting with map

map = function (doc) {
  for (i = 0; i < doc.topics.length; ++i) {
    // emit [ name, 1 ] for each topic
    emit(doc.topics[i], 1);
  }
};

[ "skating", 1 ]
[ "skating", 1 ]
[ "music", 1 ]
...
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Aggregating with reduce

reduce = function (keys, values, rereduce) {
  if (rereduce) {
    // reducing a reduce result
    return sum(values);
  }
  // return number of values in group
  return values.length;
};

[ "skating", 2 ]
[ "music", 1 ]
...
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Map-reduce

 map-reduce functionality is available in many 
NoSQL databases

 it got popular because map can be run fully 
distributed, thus allowing the analysis of big 
datasets

 it is actual programming, not writing queries!
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Document stores – MongoDB

 MongoDB is a document store with a BSON 
(a binary superset of JSON) type system 

 similar documents are organised in 
databases with collections

 to connect to a MongoDB server, use the 
mongo client (no HTTP)



© 2013 triAGENS GmbH | 2013-08-24

Saving the user object in MongoDB

 to store the user object, use save:
mongo> db.user.save({
  "_id" : 1234,
  "name" : {
    "first" : "foo",
    "last" : "bar"
  },
  "topics" : [ "skating", "music" ]
});
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Querying the user object in MongoDB

 use find to filter on any attribute or sub-
attribute(s):
mongo> db.user.find({ 
  "_id" : 1234
});

mongo> db.user.find({ 
  "name.first" : "foo"
});
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Querying using $query $operators

mongo> db.user.find({ 
  "$or" : [ 
    { "name.first" : "foo"},
    { 
      "topics" : { 
        "$in" : [ "skating" ] 
      }
    }
  ]
});
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Querying in MongoDB: more options

 find queries can be combined with count(), 
limit(), skip(), sort() etc. functions

 secondary indexes can be created on 
attributes or sub-attributes to speed up 
searches

 several aggregation functions are also 
provided

 no joins or cross-collection queries are 
possible
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Querying in MongoDB: more options

 find queries can be combined with count(), 
limit(), skip(), sort() etc. functions

 secondary indexes can be created on 
attributes or sub-attributes to speed up 
searches

 several aggregation functions are also 
provided

 no joins or cross-collection queries are 
possible
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Document stores – ArangoDB

 ArangoDB is a document store that uses a 
JSON type system

 similar documents are organised in 
collections

 server functionality is exposed via HTTP 
REST API

 to connect, use curl, the arangosh client or 
the browser
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Saving the user object in ArangoDB

arangosh> db._create("user");
arangosh> db.user.save({
  "_key" : "1234",
  "name" : {
    "first" : "foo",
    "last" : "bar"
  },
  "topics": [
    "skating",
    "music"
  ]
});
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Querying the user object in ArangoDB

 to get the object back, query it by its unique 
key:
arangosh> db.user.document("1234");

 to retrieve document(s) provide some 
example values:
arangosh> db.user.byExample({ 
  "name.first": "foo" 
});
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ArangoDB Query Language (AQL)

 in addition to the low-level access methods, 
ArangoDB also provides a high-level query 
language, AQL

 the language integrates JSON naturally
 AQL allows running complex queries, 

including aggregation and joins
 indexes on the filter conditions and join 

attributes will be used if present
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Querying with AQL

to query all users with at least 3 topics 
(including topic "skating") with topic counts:
FOR u IN user
  FILTER "skating" IN u.topics &&
         LENGTH(u.topics) >= 3
  RETURN {
    "name" : u.name,
    "topics" : u.topics,
    "count" : LENGTH(u.topics)
  }
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Aggregation using AQL

to count the frequencies of all topics:
FOR u IN user
  FOR t IN u.topics
    COLLECT topicName = t INTO g
    RETURN {
      "name" : topicName,
      "count" : LENGTH(g)
    }    
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Key-value 
stores
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Key-value stores – principle

 in a key-value store, a value is mapped to a 
unique key

 to store data, supply both key and value:
> store.set("user­1234", "..."); 

 to retrieve a value, supply its key:
> value = store.get("user­1234");

 keys are organised in databases, buckets, 
keyspaces etc.
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Key-value stores – values

 key-value stores treat value data as 
indivisible BLOBs by default (some 
operations will treat values as numeric)

 for the store, the values do not have a 
known structure and will not be validated

 as no structure is known, values can only be 
queried via their keys, not by values or sub-
parts of values
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Key-value stores – basic operations

 key-value stores are very efficient for basic 
operations on keys, such as set, get, del, 
replace, incr, decr

 many stores also provide automatic ttl-
based expiration of values (useful for 
caches)

 some provide key enumeration to retrieve 
the full or a restricted list of keys
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Saving the user object in Redis

 Redis is a (single server) key-value store
 to connect, use redis­cli (or telnet)

 to store the user object in Redis:
redis> set user­1234 
       <serialized object 
        representation> 
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Querying the user object from Redis

 to retrieve the user object, supply the key:
redis> get user­1234
<serialized object representation> 

 to query the list of users, we can use key 
enumeration using a prefix:
redis> keys user­*
1) "user­1234"

 that's about what we can do with BLOB 
values
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Additional querying in Redis

 Redis provides extra commands to work on 
data structures (sets, lists, hashes)

 these commands allow to Redis to be used 
for some extra use cases
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Mapping users to topics in Redis

 we can use Redis sets to map users to topics
 each topic gets its own set
 and user ids are added to all sets they have 

topics for:
redis> sadd topic­skating 1234
redis> sadd topic­music 1234
redis> sadd topic­skating 2345
redis> sadd topic­running 3456
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Querying users for topics in Redis

 which users have topic "skating" assigned?
redis> smembers topic­skating
1) "1234"
2) "2345"

 which users have both topics "skating" and 
"music" assigned (intersection)?
redis> sinter topic­skating
              topic­music
1) "1234"
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Querying distinct values in Redis

 using the sets and key enumeration, we can 
also answer the question "what distinct topics 
are there?":
redis> keys topic­*
1) "topic­skating"
2) "topic­music"
3) "topic­running"
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Data structure commands in Redis

 there is no general-purpose query language 
so querying is rather limited

 in general, data must be made to fit the 
commands

 the special commands are very useful to 
implement counters, queues, and 
publish/subscribe
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Other key-value stores

 other key-value stores use the memcache 
protocol or provide an HTTP API

 some allow users to maintain secondary 
indexes

 these indexes can be used for equality and 
range queries on the index data

 some key-value stores also provide map-
reduce for arbitrary queries
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Summary



© 2013 triAGENS GmbH | 2013-08-24

Summary – non-relational

 NoSQL databases are very different from 
relational databases and do not follow the 
relational model

 instead of working on fixed column tables, they 
work on aggregates or BLOBs

 they often intentionally lack features that 
relational databases have

 SQL is not widely used to query and administer
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Summary – categories

 there are different categories of NoSQL 
databases, with different use cases and 
limitations each

 key-value stores normally focus on high 
throughput and/or scalability, and often allow 
limited querying only

 document stores try to be more general 
purpose and often allow more complex 
queries
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Summary – usage

 the APIs of NoSQL databases are often 
simple, so it is easy to get started with 
them

 providing database access via HTTP REST 
APIs is quite common in the NoSQL world

 this allows querying the database directly 
from any HTTP-enabled clients (browsers, 
mobile devices etc.)
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Summary – variety

 NoSQL databases are very different from 
each other

 there are yet no standards such as SQL is in 
the relational world

 there is an interesting attempt to establish a 
cross-database query language (JSONiq)
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