
Beolink.org!

Best Practices to create High Load Websites!

Beolink.org!

9/5/11!
2!

Agenda

§  Introduction!

§  Design and Optimizations!
§  Generic Optimizations!
§  Presentation Layer!
§  Application Layer!
§  Data Layer!

§  Example!

§  Service Operation!
§  Monitoring!
§  Emergency Operations!

Beolink.org!

9/5/11!
3!

Introduction: The value of an IT
Service

From an ITIL perspective, the value is composed by two
components: utility (fitness for purpose) and warranty
(fitness for use.)!
!
Utility is a "[f]unctionality offered by a product or service to
meet a particular need. Utility is often summarized as 'what
it does'."!
!
Warranty as "[a] promise or guarantee that a product or
service will meet its agreed requirements" and as "derived
from the positive effect of being available when needed, in
sufficient capacity, and dependably in terms of continuity
and security."!

Beolink.org!

9/5/11!
4!

Introduction

Do you have the new Amazon web
site ?!

!
4.3 million pages/day !

= 50 pages/s, I don’t think so !!
!

1000 pages/s = 86 mil pages/day!
Interesting figure…!

Beolink.org!

9/5/11!
5!

Introduction

How fast is fast
enough? !

Beolink.org!

9/5/11!
6!

Introduction: user perception

Response!

80% of the end-user response time is spent on the front-end. !
!
Most of this time is tied up in downloading all the components in the page:
images, stylesheets, scripts, Flash, etc. Reducing the number of components
in turn reduces the number of HTTP requests required to render the page!
(see Netflix case studies)!

Request! Render!
css loading, asset loading, javascript loading!

Time!

Beolink.org!

9/5/11!
7!

Introduction

Do you know your
Application Architecture ? !

Beolink.org!

9/5/11!
8!

Introduction: Architecture [ˈɑːkɪˌtɛktʃə]

A software architecture is an abstraction of the run-time
elements of a software system during some phases of its
operation. A system may be composed of many levels of
abstraction and many phases of operation, each with its own
software architecture.!
!
A software architecture is defined by a configuration of
architectural elements--components, connectors, and data--
constrained in their relationships in order to achieve a desired set
of architectural properties.!
!
A component is an abstract unit of software instructions and
internal state that provide a transformation of data via its interface.!
!
A connector is an abstract mechanism that mediates
communication, coordination, or cooperation among components.!
!
Datum is an element of information that is transferred from a
component, or received by a component, via a connector.!
!
[1] Roy Filding theis!

Beolink.org!

9/5/11!
9!

Introduction: Web Architecture

Presentation Layer supports a client, the
system needs to have a presentation layer through
which the user can submit operations and obtain a
result.!
!
Middleware Layer is just a level of indirection
between presentation and other layers of the
system. It introduces an additional layer of
business logic encompassing all underlying
systems. !
!
Application layer establishes what operations
can be performed over the system and how they
take place. It takes care of enforcing the business
rules and establishing the business processes. !
!
Resource (Datum) deals with the organization
(storage, indexing, and retrieval) of the data
necessary to support the application logic. !

Presentation!

Application!

Resource!

Middleware!

Beolink.org!

9/5/11!
10!

Design!

Beolink.org!

9/5/11!
11!

Design: Numbers

q Request per second!
!
q Page composition!

q Content type/Dimension!

q Number of users!

q Peaks!

Beolink.org!

9/5/11!
12!

Introduction: Architectural Properties

Network
Performance!

User-perceived
Performance!

Network
Efficiency! Scalability!

Simplicity!

Modifiability!

Evolvability! Extensibility!

Customizability!

Configurability!

Reusability!

Beolink.org!

9/5/11!
13!

Design: Matrix

Properties! Value!
Network Performance !
User-perceived
Performance!
Network Efficiency!
Scalability!
Simplicity!
Modifiability!
Evolvability!
Extensibility!
Customizability!
Configurability!
Reusability!

Beolink.org!

9/5/11!
14!

Layers!

Beolink.org!

9/5/11!
15!

Design: Layer 0

q Split the system in pieces!
!
q  I/O!

q TCP/IP!
!!

q Filesystem!
!!

!
!!

Beolink.org!

9/5/11!
16!

Design: I/O

q  I/O!
!Ethernet: bonding!
!Disks: SAS/SSD/infinibend!
!!

q Filesystem!
!Avoid NFS!
!Different FS (for operation type)!
!Specific Options (noatime)!
!Block size!
!Journaling!

!
q Logging!

!Dedicated sites!
! AMQP!

Application!

Resource!

ls: cannot access nfsdir: Stale NFS file handle!

760,000msg/sec
ingress on an 8 way
box or 6,000,000msg/
sec OPRA messages.!

Beolink.org!

9/5/11!
17!

Design: TCP/IP

q TCP/IP!
!net.ipv4.tcp_tw_reuse=1!
!net.ipv4.tcp_tw_recycle=1!
!net.ipv4.tcp_fin_timeout=30!
!net.ipv4.tcp_keepalive_time=300!

 !/proc/sys/net/ipv4/ip_local_port_range!
 ! fs.file-max=128000!

!net.core.somaxconn=250000!
!net.ipv4.tcp_max_syn_backlog=2500!
!net.core.netdev_max_backlog=2500!
!ulimit -n 10240!

!
q  IP Contract!

!net.ipv4.netfilter.ip_conntrack_max!

!
!
q Firewall!

!Request / rate!
!IP ACL!
!Dynamic ACL (phrel)!

!
!!

Application!

Resource!

500 req/sec*900 = 450.000 sockets !
!
!
!
!

ip_conntrack: table full, dropping packet.!
!
!
!

‐‐limit rate!
‐‐limit‐burst number!
!
!
!

Beolink.org!

9/5/11!
18!

Design: Presentation

Application!

Resource!

q Yahoo Rules!

q Load Distribution!

q Proxy/Caching!

q Web Server!

q Content Delivery
Network !

q Split access on different
Domains!

!

Application!

Resource!

Beolink.org!

9/5/11!
19!

Design:: Yahoo! Rules

The Exceptional Performance team (Yahoo!) has identified a number of
best practices to make web pages fast. The list includes 35 best
practices divided into 7 categories.!
!

Content!

• Make Fewer
HTTP Req!

• Make Ajax
Cacheable!

• Reduce the
number of
DOM!

• …!

Server!

• Use get for
Ajax Req!

• Flush Buffer
Early!

• …!

Cookie!

• Reduce
Cookie Size!

• Use Cookie-
Gree
Domains!

• …!

CSS!

• Put
Stylesheets
at Top!

• Avoid CSS
exp!

• Avoid Filters!
• …!

Javascript!

• Put scripts at
Botton!

• Make
javascript and
CSS ext!

• Minify!
• …!

Images!

• Make
favicon.ico
small and
Cacheable!

• Optimize!
• Do not Scale
Image in
HTML!

• …!

Mobile!

• Keep
components
under 25 kb!

• Pack
components
into a
multipart
document!

25 % without modifying infrastructure!

Beolink.org!

9/5/11!
20!

Design:: Yahoo! Rules

Example!

Beolink.org!

9/5/11!
21!

Design: Load Distribution

q  DNS!
-  Low TTL!
-  GEO IP!
-  Round Robin!
-  More than one IP!
-  Response base on system load!
-  Split Components across

Domains!

q  Load Balancer!
-  TCP/IP!
-  Layer 7!
-  SSL!

q  Anycast!
-  Up to 32 systems per IP!
-  High availability on WAN !

Application!

Resource!

Beolink.org!

9/5/11!
22!

Design: Proxy/Caching Application!

Resource!

0"

20,000"

40,000"

60,000"

80,000"

100,000"

120,000"

ATS"2.1.9" Nginx"0.8.53" Varnish"2.1.5"

Th
ro
ug
hp

ut
)

Req"/"sec"

q  Configure ETags!

q  Add expiration or
Cache-control
Header!

q  Extension modules!

q  Reverse Proxy base
on url or domains!

q  Redirect on
business logic
(Middleware)!

Beolink.org!

9/5/11!
23!

Design: WebServer

q  VirtualHost with dedicated IP!

q  Compress content !

q  Process Model!
q  Number of Process!
q  Number of clients!
q  Spare..!

q  KeepAlive and KeepAliveTimeout!
The KeepAlive directive allows
multiple requests to be sent over the
same TCP connection. It changes
model from Request to User!

Application!

Resource!

Apache optimization!
!
Remove unneeded modules!
Set AllowOverride to None!
Avoid FollowSymLinks and SymLinksIfOwnerMatch!
Avoid content negotiation (Multiview)!
MaxClients =(Total Memory - Operating System
Memory) / Size Per Apache process.!
!
MinSpareServers, MaxSpareServers, and StartServers:!
Apache can spawn a maximum of 32 child processes per
second!

Beolink.org!

9/5/11!
24!

Design: Content Delivery Network

A content delivery network or
content distribution network
(CDN) is a system of computers
containing copies of data placed
at various nodes of a network.!
!

!
!

Application!

Resource!

q Preload!
q Access Control !

Beolink.org!

9/5/11!
25!

Design: Modular Application Logic

Presentation!

Resource!

q Distribution!
!
q Accelerator!

q Session and Cookies!

q More instance on same
system!

!
!

Beolink.org!

9/5/11!
26!

Design: Distribution

!
q Shared!
All components have all the
functions (round robin)!

q Function/resource!
Components are grouped by
function/resource!

q User!
Components are divided by cluster
of users!

Beolink.org!

9/5/11!
27!

Design: Accelerator

q PHP!
Accelerator !
!
!
!
!
HIPHOP!
!
!
!
!
!

!

!PHP !with APC !% !with eA !% !
! ! ! ! !

Tot sec !175.62 !33.21 !528.83% !29.18 !601.85%!
Req/sec !5.69 !30.11 !529.17% !34.26 !602.11%!
ms per req !175.62 !33.21 !528.83% !29.19 !601.71%!

q Python!
!
Framework !Transaction rate [1/sec]!
Go http ! !2063 !!
Twister ! !2020 !!
Web.go ! !1753 !!
Tornado ! !1662 !!
Tornado+nginx !1364 !!
Web.py+gevent !888 !!
Web.py+gunicorn !538 !!
Web.py+CheryPy !304 !!
Web.py+flup+nginx !211 !!

Beolink.org!

9/5/11!
28!

Design: Modular Application Logic

q Cookies!
Size!
Encryption (key rotation)!

 !
!
!
!
!
q Session!

!Sticky session->table in memory!
!Round Robin->memcached!
!Two levels (NUMA)!

!
!

Beolink.org!

9/5/11!
29!

Design: More instance

q Better CPU Usage!
Many applications do not
support parallelization, then
it is not possible to
implement a scale up
approach (deploying the
applications on larger
servers)!

!
!
q Better Memory Usage!

Many applications still use 32
bits or have fixed internal
data structure!

Beolink.org!Design: Modular Application Logic!

q Choose the correct
algorithms and data
structures!
dqueue vs list, hash vs trees, locks
vs read/write locks, bloom filter!

q Memory allocation!
Reuse memory, stack vs heap,
tcmalloc!

q Make fewer system calls!
Larger writes and reads!

Beolink.org!

9/5/11!
31!

Design: Data Layer

Presentation!

Application!

q Filesystem!
q  Distributed!
q  Replication!

q Database!
q  Partitioning!
q  Replication!
q  NoSQL!

q Hierarchical Storage!
q  Directory Server!
q  JSR-170/230!
!

Beolink.org!

9/5/11!
32!

Design: Filesystem

q Distributed
Filesystem!
!- Local copy/cache!
!- Parallel!

!
!
q Replication!

!- rsync+inotify!
!- DRDB!
!!

!

Do not use file system as a !
COMMUNICATION PROTOCOL !!

Beolink.org!

9/5/11!
33!

Design: Database

q Partitioning!
Small table!
Many systems!

!
q Replication!

Separation btw Read and Write!
Different Index on different system!
!

q NoSQL!
Key=value!
No schema!
!
!

Tungsten Replicator!

Beolink.org!

9/5/11!
34!

Design: Hierarchical Storage

q Directory Server!
Split in domain!
Multi Master!
Right Index !
Avoid COS!

!
!
q JSR!

Distribution!
!

!
!
!
!Do not use Directory Servers as a !

A STANDARD DATABASE !!

Beolink.org!

9/5/11!
35!

Design: Profiling

q  Find bottleneck before production!

q  Dynamic program analysis!

q  Show frequency of called functions !

q  Show usage of lines in code!

q  Show duration of function calls!

The 20% of the code is responsible for 80% of the results (time)!

Cmd line: top, htop, vmstat, dstat,
strace!
Statistical: Oprofile, google profile!
Instrumentiing: valgrind's callgrind,
gprof!
!

Beolink.org!

9/5/11!
36!

Design: Capacity

q Find relation btw
application tasks and
resources usage!

!
q Find max Load !

9

Small TLD Zone performance evaluation
240,419 records

13

Mid-Sized TLD Zone performance evaluation
19,405,229 records

Beolink.org!

9/5/11!
37!

Design: Matrix

Properties! Replication! Load Balancing! …!
Network
Performance !

o!

User-perceived
Performance!

+!

Network Efficiency! -!
Scalability! ++!
Simplicity! -!
Modifiability! o!
Evolvability! o!
Extensibility! o!
Customizability! o!
Configurability! -!
Reusability! +!

Beolink.org!

Example!

38!

Beolink.org!

9/5/11!
39!

Design: CMS

Load Balancer!

HTTP! HTTP! HTTP! HTTP!

HTTP! content! media!

Brick1! Brick2! Brick3! Brick4!

2 VirtualHost!
Accelerator APC!
Typo3 plugin Static cache!
Separate Logging!
KeepAlive!

2 database !
2 Typo3 instances!

Separated site with
Authoring!

Max 4000 req/sec!
Avg 2500 req/seq!

Beolink.org! Example: Something goes wrong ?

$loops = 150 $steps = 200 !
if (is_file($this->resource)) { 
 $this->sysLog('Waiting for a different process to release the lock'); !

$i = 0; 
while ($i<$this->loops) { !

!$i++; usleep($this->step*1000); !
!clearstatcache(); 
!if (!is_file($this->resource)) { !
! !// Lock became free, leave the loop  
! !$this->sysLog('Different process released the lock'); !
! !$noWait = false; !
! !break; !
!} !

$noWait = true; !
 } !

if (($this->filepointer = touch($this->resource)) == false) {!
! throw new Exception('Lock file could not be created'); !

}!
… !

40!

500 req/sec * 30 sec !
!
15000 Sockets!
15000/req_per_proc
Processes!
15000 DB connections !!!!
!
ALL the processes are in !
READY STATE!
!
The content could be locked
forever!

Something goes wrong …

load averages: 534.93 281.26 1.26!

Beolink.org!

9/5/11!
41!

Design: CMS

Load Balancer!

Cache! Cache! Cache!

Master/Author!

…!

Beolink.org!

9/5/11!
42!

Design: Enterprise

Load Balancer!

locators!

DB
Slaves!

DB Master!

Auth!

DS slaves!

cache!

Apps Servers!

Ds Master!

CR
Slaves!

Zone 1!

DB
Slaves!

cache!

Apps Servers!

CR
Slaves!

Zone n!

Meta Data!

…!

CR Master!

Redirect to !
Zone n!

Memcached! Memcached!

DNS GEO IP!

Load Balancer!Load Balancer!

Replication to Region X!

Region 1!

Beolink.org! Service Operation

Service Operation!

43!

Beolink.org!

9/5/11!
44!

SO: Monitoring

q  Internal!
System!
Internal state!
Traffic !

!!
q External!

User experience, time
spent for each component
(components time loading,
rendering, execution,…)!
!

q Alarm!
Define key performance
Indicator on System
Capacity !
!

System!
Requests stats (per second, per IP, …)!
Concurrent Users!
System load (cpu, memory,disk I/O,..)!
Number of Processes!
!

APPS!
Memory per instance!
Number of elements in Data structure!
Communication Timeout!
!

Database!
Connection!
Query time!
Query per Table!
Top query!

!

Beolink.org!

9/5/11!
45!

SO: The red button

q  Improve capacity !!
Remove controls!
Increase number of systems!
Dynamic to Static !
Increase TTL of cache!
Async Operation!
Operations Queue!

!
q Disconnection!

Exclusion of Cluster of users!
Exclusion IP list!
Bandwidth reduction!
Web site Sections closure!
!

Beolink.org!

9/5/11!
46!

Lessons

7 Lessons Learned !
(so far) !

Beolink.org!

9/5/11!
47!

Lesson 1

Partitioning Algorithms !!
 (application driver) !

Beolink.org!

9/5/11!
48!

Lesson 2

Kill your Web Designer !!
(one shot) !

Beolink.org!

9/5/11!
49!

Lesson 3

Never repeat !!
(caching) !

Beolink.org!

9/5/11!
50!

Lesson 4

Share nothing !!
(local content) !

Beolink.org!

9/5/11!
51!

Warm up!!
(empty cache) !

Lesson 5

Beolink.org!

9/5/11!
52!

Asynchronous!
(queue) !

Lesson 6

Beolink.org!

9/5/11!
53!

Lesson 7

Measure, Measure, Measure,

Measure, Measure, Measure! !

Beolink.org! Cloud

Cloud ?!

54!

Beolink.org! Cloud Stack

Things must change!!
!
q  Web UI for users, affiliates, marketing,

operations!
q  Agile machine management is part of the API!
q  Scale up -and down!
q  Live upgrade of running system!
q  Persistence with key-value stores!
q  A Petabyte filesystem is part of the application!
q  MapReduce jobs close the loop!
q  Developers deploy to the cloud to test!

Original work:!
http://svn.apache.org/repos/asf/labs/clouds/
apache_cloud_computing_edition.pdf!

55!

Beolink.org!I look forward to meeting you…!

XVIII European AFS meeting 2011
HAMBURG – GERMANY

 4-7 October

Who should attend:
§  Everyone interested in deploying a globally accessible

file system
§  Everyone interested in learning more about real

world usage of Kerberos authentication in single
realm and federated single sign-on environments

§  Everyone who wants to share their knowledge and
experience with other members of the AFS and
Kerberos communities

§  Everyone who wants to find out the latest
developments affecting AFS and Kerberos

More Info: http://www.openafs.org/

9/5/11!
56!

Beolink.org! !

Thank you  
 
manfred@freemails.ch!

