
The Random Query Generator

a cost-effective, emotionally 
gratifying database testing



Current state of DB Testing

• QA is not considered fun
• QA is very resource-intensive

– Some commercial companies claim close to 
1:1 Tester-to-Developer ratio

so, sometimes,

– Insufficient QA is done

– Products are released with serious issues



Lessons Learned

• Some database products can not run even 
simple DML
– “runs DBT2” does not mean bug-free

• ACID and database recovery are difficult
– repeated deliberate crashing is required

• Easy sequences of SQL can cause 
crashes, assertions, table corruption



RQG Mode of Operation

1. Generate SQL based on a grammar file;

2. Execute SQL concurrently against one or 
more databases via Perl DBI/JDBC/ODBC;

3. Validate error codes and result sets with 
Perl or by comparing between databases



Functional Testing

• Two- and three-way comparisons with 
other database products
– including MySQL, JavaDB and PostgreSQL

• API for custom Validators that can check 
the result set, error code, affected_rows 
from each query



Stress Testing

• A comprehensive SQL grammar can 
generate a wide variety of DDL/DML

• Concurrent execution fishes out any 
indisirable interactions between any 
number of commands;

• Detects crashes, assertions, deadlocks, 
valgrind and data corruption;



Transactional Consistency

• Test Repeatable Read via automatic re-
execution of all SELECT queries;

• Test recovery via deliberate crashing
– including crashing the recovery itself

• Test transactional consistency via 
invariants



Replication Testing

• Execute any workload on master

• Introduce adverse replication situations
– network outages, server restarts, etc.

• Monitor slave for errors

• Dump and compare master and slave



Performance Testing

• Performance comparisons between 
databases can be made on a per-query level

• RQG reports queries that have suffered a
performance regression above a threshold

• Useful mostly for Optimizer testing, but 
random data and queries may be unrealistic



Goodies

• Deadlock detection
• Backtraces are dumped on a crash
• Automatic simplification for:

– grammars

– individual queries
– sequences of queries (logs, mysqltest files)

• Automatic generation of test cases
– currently, in mysqltest format



Automation

• If you have a test result database
– can report to an XML file

• If you do not have it,
– log to stdout is verbose enough
– backtraces are dumped in the log

• Core file, binary, bzr version-info are saved

• Can run the same test repeatedly
with various settings



SQL Not Required

Grammar-based approach can be used to 
generate queries in proprietary languages 
and APIs
– XML queries

– generate Perl code directly
– generate intermediate representation that a 

custom Executor can covert to API calls
HANDLER t1 OPEN

HANDLER t1 READ idx1 = (’a’,’b’,’c’)

HANDLER t1 CLOSE



Open Questions

• Difficult to have concurrent functional testing

• Grammar must be constructed with care
– using a protocol for grammar creation

• Purely random data and queries may be 
wildly unrealisic
– unless data and query patterns come from a 

customer or a benchmark



Cost-effective

especially if:

• used in comparison testing between two 
configurations or codebases or 

• when comparing against other database 
products, and

• when using one of the existing grammars


